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Modulation Broadening of Unsaturated Lorentzian Lines* 
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Closed, analytic expressions are obtained for the harmonic amplitudes which arise in the modulation 
of unsaturated Lorentzian absorption lines. Exact formulas relating characteristics of the observed signals 
(amplitude, width, slope ratios, etc.) to the true half-width for arbitrary modulation amplitude are derived. 
The results of greatest experimental interest are graphed. 

N the interpretation of magnetic resonance data I obtained with phasedetection techniques, it is 
necessary to allow for the effect of modulation broaden- 
ing on the absorption lines. Several authors' have dis- 
cussed this problem and supplied useful corrections to 
observed quantities. These formulas, however, have 
been either approximate or based on series expansions 
whose convergence is slow in some regions of experi- 
mental interest. The series in fact do not converge at 
all over certain ranges of modulation amplitude. I n  
connection with an experimental program requiring 
accurate corrections for large amplitude modulation, the 
effect of modulation broadening on unsaturated Lorent- 
zian lines was calculated for arbitrary modulation am- 
pltiude. The results are in closed form and are exact 
for the case of very slow sweep through the line. 

Let H , ( t )  be the homogeneous applied magnetic 
field whose time dependence involves only the slow 
linear sweep across an absorption line. Let H O  be the 
field at which resonance occurs, Hi  the half-width 
(distance between half-intensity points) of the true 
line, and H ,  the amplitude of the sinusoidal modulation 
with circular frequency w .  The normalized unsaturated 
Lorentzian absorption line may be written 

and under modulation a signal will be generated which 
is proportional to 

(2) 
w* g[H ( t )  ] = T-' 

($Hi )  '+ [Ha  (t) + H ,   COW^- Bo]" 

The sweep rate is assumed to be very small so that 
H,(t) remains essentially constant over a time interval 
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27r/u. Writing Ha-Ho=Ha and Fourier analyzing g ( t ) ,  

;Hi 
(gH$)*+(H,+a, cowt)' 

g(t) =?r-' 

where the integrals for the Fourier amplitudes 

may be performed by a standard technique of contour 
integration.2 Using phase detection of the fundamental, 
the recorded signal will be proportional to the Fourier 
coefficient ul. Since the integration may be performed 
at once for all n, an expression for the amplitude of any 
harmonic will be displayed. This is then specialized to 
the case of primary interest here, and the properties of 
a1 further investigated. 

Define dimensionless parameters a and /3 where 

and the auxiliary variables y, u, I, and 4, where 

4 = arc cos { - G/U+} O<+<r. (6) 

2 1'- >I. Morse and 11. I:eshlacli, Alethuds (4 Z k e o i e & d  Physics 
(RlcGraw-Hill Book Company, Inc., New York, 1953), Vol. 1, 
p. 405. 
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The result of the integration for any n is 

[rn-l+r+-l)] sin(n+ l)+- [rn+l+r-(n+l)] sin(%- 1) + 
an (a+, H w ,  Ha) = (21 - [r-1-r][r2+r-2+2 cos2+] sin+ +I,} 7 

where 
Io = I1 = 0, 

Iz= 1, 

z=r exp(h$). 

For the cases n= 0,1 ,2  the general expression reduces to 

(9) 

The detected signal, al[Ht,  H,, H a ( t ) ] ,  is obtained 
by restoring the linear time variation of Ha,  or equiva- 
lently, Ha. The pertinent properties of the resulting 
curve, which is similar in shape to the derivative of the 
Lorentzian curve, may be obtained by taking the 
derivative 

u ~ ( u ~ - u -  27uf37) . (12) 
(u- 2) 5 (ZL- 7) (dal/dHa) = - (2/Hw3) 

Setting the factor (u2-u-- 27uf37) to zero generates 
relationships giving the location and amplitude of the 
two anti-symmetric peaks of al for any modulation 
amplitude. Letting the symbol for any quantity with a 
suffix p attached denote that quantity evaluated a t  the 
peaks, these relations are 

and 
( H a ) . = a P H w =  (a,/2P)Ht, (13) 

ap = [ 1 +sp2-+p @’+a) ”1’ (15) 

up= 2+Qp*++p(p?+a):. (16) 

Additional expressions, which often facilitate maiiipula- 
tions, are 

7, = 
up” 3(Up-2)2 %(%-1) 4a,= -~ Jp? = 

2 ~ , -  3 2 ~ , -  3 214,-3 

(17) 

Figure 1 illustrate\ the depeiidc 111.e of the loc alien a t ~ l  
amplitude of the peaks on the modulation amplitude. 

~~ 

Setting the derivative (d/dH,) [ (al),] to zero, it 
further results that the maximum possible height of 
the peaks of a1 occurs when P=+.  On letting the sub- 
script m indicate fulfillment of this condition, the 
following values are obtained: 

(yptn = f $v’3 yw=2 uw=3 

(H,),=I& (H6)ptn==td3/2(H+) 

(ai),= f 2  (l/H+) ’. (18) 
These results are contained implicitly in Fig. 1. Quan- 
tities corresponding to and (al), for an un- 
broadened line would be the location (Ha),L and 
height ( a l ) , ~ ,  of the peaks in the first derivative of a 
pure Lorentzian curve. Calculation shows that 

(H6)pF3(H6)pL ( a l )p=  (h/3G) ( @ l ) p L .  (19) 

Another experimentally useful characteristic is the 
ratio of maximum slopes of al. Equating thc second 
derivative 

d2al/dHa2= i ( 6 / H W 4 )  

. .  (27-~)4[(7-1)~:;- (7-1 j(l+27)u2+47(7- 1 )u+] 
I \  

( ~ - 2 2 ) ! ( ~ - 7 ) 5  

(20) 

ZL = 27, (21) 

(7-1)d-  (7-1) (1+27)u~+47(7-l)u-7~=O. (22) 

to zero gives the possibilities 

or 

t 

0 0 2  04 06  08 10 12 14 16 18 20 

Hu/%it 

I;I(:. 1. L)cl)cntlencc of the location and height (al),, of 
t h c  olxxrvetl lxaks on ~uodulation amplitude. 
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krc .  2. Dependence of the location of outer maximum slope 
(Ha) .  and the ratio of maximum slopes on modulation amplitude. 

The first of these equations implies Ha=O from the 
definition of u. Evaluating Eq. (12), the inner maxi- 
mum slope of u1 occurring at  Ha = 0 is in general, 

dal/dHa I H S = O = - ~ ( ~ / ~ ~ ) ~ C B ' / ( ~ + P ' ) ~ ] .  (23) 

The outer maximum slope is given by one of the roots 
of the equation 

(ys- 1)u.J- (ys- 1) (1+2%)Zds2+4%(y*- l)u, 

-~.2=0, (24) 

where the subscript s indicates the value of a quantity 
a t  the place of outer maximum slope. It is quite cum- 
bersome to extract this root straightforwardly, except 
for the case where /3=$ which is discussed below. For 
the general case, an indirect approach which proceeds 
as follows seems most feasible. Treating Eq. (24) as a 
quadratic for ys, it is solved to obtain 

"" 2 (2u,2-4up+1) 
u. 

X { U , ~ + U , - ~ + ( U . - ~ )  ( ~ ~ - 2 ~ , + 5 ) ~ ) .  (25) 

After selecting a value for ?I , ,  ys is fixed by this equation. 
Then cy, and /3 are evaluated with the equations 

(Y? = $4 (27 - u )  (26) 

$= y- 1 -a?, (27) 

which follow immediately from the delinitions of y 
and u. The slope ratio can then be fourid using Eqs. (12) 
and (23). Figure 2, showing how the location of outer 
maximum slope and the slope ratio depend on modula- 
tion amplitude, was constructed using this procedure. 

Returning to the case when a1 has maximum ampli- 
tude, Le., @=*, it can be shown that Eq. (24) reduces to 

um3-5um~+3unn+5 = 0, (28) 
where the subscript m means simply @=+ as before. 
The only valid root of this equation is expressible as 

um=+[5+8 cos(lr/6++ sin-l(5/32) }]=3.9032, (29) 

and the other quantities needed are given in terms of 
urn by 

urnz- 5 
Yam' Z2.6888, 

2 (usrn- 2) 

( a 6 ) m = Q . s 2 4  (30) 

("> =(2J zLsm:(Us,-2)~(3u,,-5) (U8m-3) 
dHa Ern (~srn'-4usrn+5)~ 

G0.31833 ( 2 / H + )  '. 
Evaluating Eq. (23) for P = i ,  

(dalldB6) BO= - (4/5 ( 5  1 $1 ( 2 / 4 )  '$ 

s-0.35777(2/H+)3, (31) 

and so the slope ratio for /3=; is -1.1239. I n  com- 
parison, the slope ratio is -4 for the derivative of the 
Lorentz curve. 
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